

Milano, 25 novembre 2015

Gli atti dei convegni e più di 4.000 contenuti su

www.verticale.net

Advances in CO₂ capture technologies in coal-fired power and hydrogen plants

Milan, 25 November 2015

Silvio Arienti, Power Process Director Luca Mancuso, Process Director

3 different process types are considered

Introduction

Acknowledgement

Fruitful cooperation with various technology suppliers and licensors, which provided an invaluable support for the success of the study

List in alphabetical order:

- Air Products
- Alstom
- Cansolv
- Chiyoda Corporation
- Foster Wheeler
- General Electric Energy
- IHI
- Johnson Matthey
- Mitsubishi Heavy Industries
- Shell
- UOP

Study cases

Туре	Case #	Plant	CO ₂ capture	Key technological features
Boiler-based	1	SC-PC	-	Alstom wet limestone scrubbing FGD
	2	SC-PC	90%	Alstom wet limestone scrubbing FGD CANSOLV solvent scrubbing
	3	Oxy SC-PC	90%	FW's CFB & FGD technology Air Products' cryogenic purification unit
IGCC-based	4.1	IGCC	90%	Shell coal gasification process, RC UOP Selexol™ solvent scrubbing
	4.2	IGCC	90%	General Electric, RSC UOP Selexol solvent scrubbing
	4.3	IGCC	90%	MHI, air-blown UOP Selexol solvent scrubbing
H ₂ & Power	5.1	IGCC+PSA	90%	Two (2) E-class gas turbines (130 MWe)
	5.2	IGCC+PSA	90%	Two (2) F-class (77 MWe)
	5.3	Boiler+PSA	90%	PSA off-gas boiler-based

Main design bases

- Greenfield location in The Netherlands (EU): sea level and Tamb 9°C
- Eastern Australian <u>bituminous coal</u>: LHV is 25.87 MJ/kg (AR)
- Pulverised coal plants: 27 MPa/600°C/620°C
- IGCC plants: two state-of-the-art F-class, 50 Hz gas turbines
- <u>Net power output of SC-PC without capture around 1,000 MWe</u>
- SC-PC plants with CO₂ have same thermal capacity
- <u>CO₂: P 11 MPa, O₂ 100 ppm, H₂S 20 ppm, H₂O 50 ppm</u>
- Overall gaseous emissions

ltem	SC-PC cases ⁽¹⁾	IGCC cases ⁽²⁾
NOx (as NO ₂)	≤ 150 mg/Nm ³	≤ 50 mg/Nm ³
SOx (as SO ₂)	≤ 150 mg/Nm ³	≤ 10 mg/Nm ³

Notes: (1) @ 6% O_2 volume dry. (2) @ 15% O_2 volume dry

Oxy-combustion and CPU

Air Products' process

Source: http://www.uop.com/?document=uop-selexol-technology-for-acid-gas-removal&download=1

Power production with and without CO₂ capture to the select sel

Specific Total Plant Cost <u>Twice the cost of the SCPC without capture</u>

TPC defined in general accordance with the White Paper "Toward a common method of cost estimation for CO₂ capture and storage at fossil fuel power plants" (March 2013).

produced collaboratively by authors from EPRI, IEAGHG, MIT, IEA, GCCSI, Vattenfall et al.

amec

foster

wheeler

Hydrogen and Power co-production

With same coal input, different designs produce different amounts of power and hydrogen

Hydrogen and power co-production

The higher the hydrogen production, the lower the TPC (and NPO)

Financial analysis

Main macroeconomic assumptions

ltem	Unit	Data
Coal cost	€/GJ (LHV)	2.5
Discount Rate	%	8
Plant life	Years	25
Financial leverage	% debt	100
Maintenance cost	% of TCR	1.5% (SCPC) 2.5% (IGCC)
Load factor	%	90% (SCPC) 85% (IGCC)
CO ₂ transport & storage cost	€/t	10
CO ₂ emission cost	€/t	0
Inflation Rate	%	constant

Levelized Cost Of Electricity

CO₂ transport & storage: 10 €/t; 90% / 85% capacity factor (SC PC/gasif); Constant €, 2013.

CO₂ avoidance cost

About 63 €/t for boiler based – About 97 €/t for IGCCs

Reference Plant: Case 1 (SC-PC without CO₂ capture)

Bituminous Coal: 2,5 €/GJ (LHV); Discount Rate: 8%

CO₂ transport & storage: 10 €/t; 85% load factor; Constant €, 2013.

LCOH (for price of electricity= ~ 115 €/MWh)

Bituminous Coal: 2,5 €/GJ (LHV); Discount Rate: 8% CO₂ transport & storage: 10 €/t; 85% load factor; Constant €, 2013.

Near zero emission cases

Particularly favorable in oxy-combustion power plants

© Amec Foster Wheeler 2015

Sensitivity of LCOE (post combustion capture)

CO₂ capture at coal-fired power and hydrogen plants

- Study has provided an up-to-date assessment of performance and costs of various coal fired power and hydrogen plants, with and without capture of the generated CO₂
- The three leading capture technologies lead to a worsening of both the plant performance (-9% pt. NEE) and the specific total plant cost (twice the cost of the SCPC w/o capture)
- Only an incentive scheme ranging from 65 €/t (boiler-based cases) to 100 €/t (IGCC-based cases) of captured CO₂ would make the investment economically viable

amecfw.com

