

HIPPS Safety Requirements

Carsten Thoegersen SME - Actuation Technologies February 2016

Agenda

- Safety Requirement General Overview
- Safety Requirements related to:
 - Safety Lifecycle causes of failure
 - Lifecycle activities
 - SRS Safety Requirement Specification
 - Proof Test & Inspection
 - Test and Diagnostic Coverage Final Elements
 - Safety Integrity Level and Architectural constraints
 - Response Time for HIPPS
- A solution addressing all the safety requirements
- Questions

Safety Lifecycle-The causes of failure and the answers

All components of any solution can fail dangerously

Systematic failures

- Occur due to:
 - Designed in
 - Engineered in
 - Procedural
- Reduced by:
 - Better processes
 - Regular Verification
 - Consistent behaviour
- People make mistakes

Random failures

- Occur due to:
 - Inappropriate application
 - Bad design
 - Fatigue
- Reduced by
 - Material quality
 - Consistent appropriate design
 - Performance monitoring
- Everything breaks eventually

Safety Lifecycle-The causes of failure and the answers

Systematic failures Answer - The safety lifecycle

Random Failures Answer – Safety Integrity Levels

Primary Cause of Failure

Source: Out of Control, Health & Safety Executive, UK

IEC61511 Lifecycle Activities

According to IEC 61 511, a Clear SRS shall contain . _ _ _ _

NOTE 1 Whenever practicable, the safety instrumented functions should be separated from the non-safety instrumentad function

Proof Test and Inspection

- Safety devices usually do nothing
- We have to test them regularly so we know they still work!
 - How often?
 - How extensively?

The Proof Test Interval (TI) is defined during SIL Verification SIL Verification will also assume a certain "Proof Test coverage"; how many of the dangerous failures are revealed by the test?

• And we have to inspect them to check for damage, tamper or unauthorised modification

Where are failures most likely?

Increase Diagnostic Coverage – Final Elements

Safety Integrity Level and Architectural constrains

HIPPS is often required to meet SIL3, Some even specify SIL4. The different Safety Requirements/Considerations are:

	HIPPS – SIL3	HIPPS – SIL4
RRF	RRF of 1,000 – 10,000	RRF > 10,000
Logic Solver	Solid State and Programmable	Solid State only
Design	Acc. to IEC 61 508 and 511	Acc. to IEC 61 508 only
Test and Inspection	Acc. to IEC 61 508 using the defined safety lifecycle	Acc. to IEC 61 508 re. Operation and Maintenance phases
HFT	According to IEC 61 511 HFT = 2 (Table 6) HFT = 1 for elements with Prior use justification	Acc. to 61 508 = Complex and rigorous, so expert guidance required

Response Time for the HIPPS

Response Time of Final Element

HIPPS are often specified with a Response time of **3-5** seconds for **Gas** and **6-20** seconds for **liquid** pipelines.

We also see requirements down to **1** second, but to maintain a high integrity and avoid introducing risks, considerations should be given to:

Inertia of the Mass in the FE (mechanical integrity)

Water hammer effect for liquid pipelines

A Solution addressing all challenges

Questions

