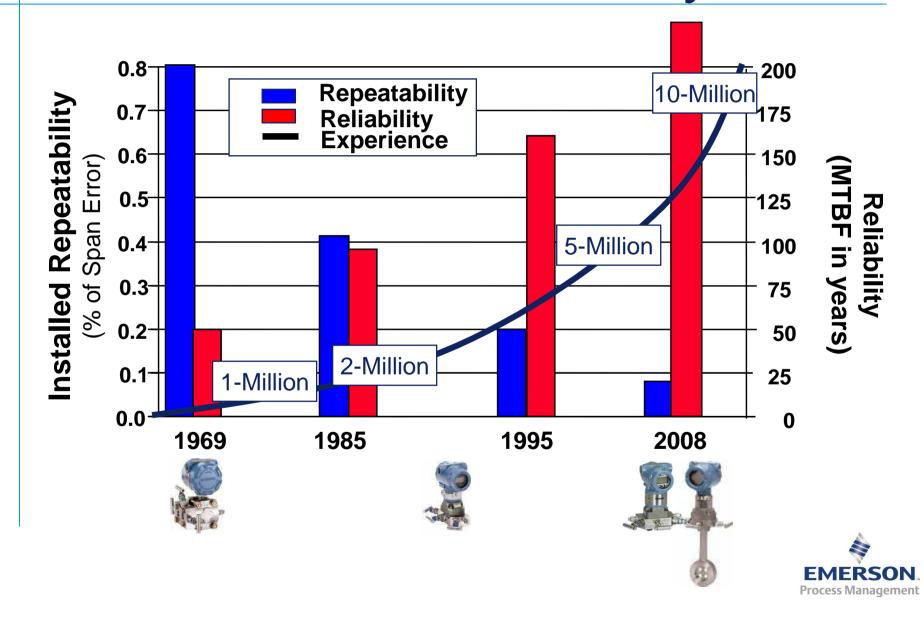
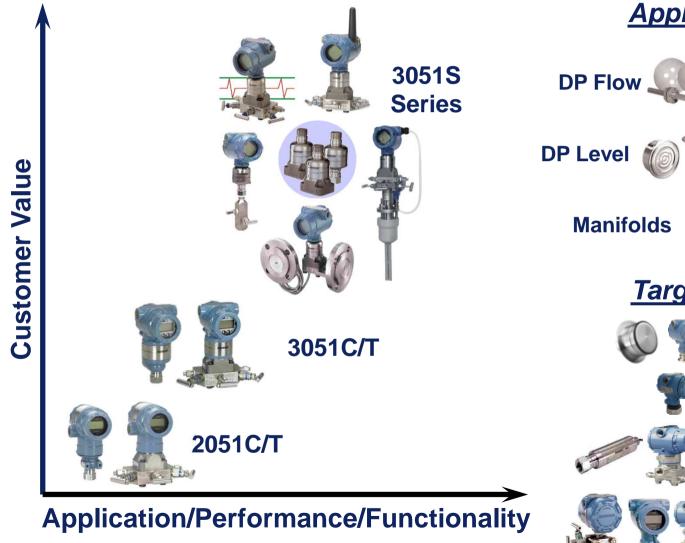


HIPPS Pressure Sensors / Transmitters

Andy Crosland BDM – Safety Instrumented Systems 18 February 2016

Agenda

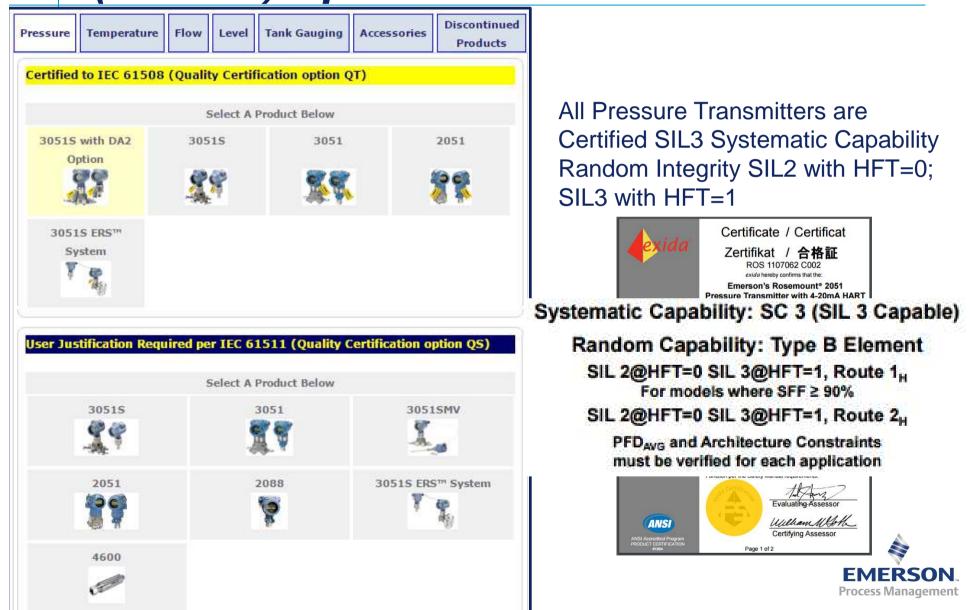

- Emerson Pressure Measurement
- Diagnostics in Safety Instrumented Systems
- Diagnosing typical failures in HIPPS Sensors
- HIPPS Sensor Architecture
 - Why do we need 2003 voting
- Process Connection and Isolation
- Proof Testing


Rosemount Pressure Has Demonstrated Technology Leadership for 40+ Years

<u>1151</u>		<u>3051C/T</u>		<u>3095</u>		51S Series
	47					
 Rugged capacitance set & transmitter packaging 	-	ar [™] Design Platfo loating" Sensor		ultiVariable™ D namically Com	• •	alable Platform st Performance
 → Modular construction → Dual compartment hous 		urface Mount Tec I Manifolds, Flow		ass Flow		reless IltiVariable
\rightarrow > 5 million units sold		ion units sold		100,000 units so	\rightarrow Ad	v. Diagnostics
1000	1000		1000			100,000 units sold
1969	1980		1990		2000	
		Indus	stry Firsts		DP Mas	sFlow
Capacitance	Coplanar					51100
Sensors		Multi	Variable		Control In	
					The Field	Truly Scalable
Dual Compartment		Smart	DP Flow	meters		Architecture
Housing		Low Power	-		Advanced Diagnostics	
Modular	Integral Monifoldo					
Construction	Manifolds	Total	5 & 10 Year	12 Year Warranty		WirelessHART. Expanding the Possibilities
			Stability	varianty	Remote	J.
					Display	

Pressure Design Innovations Achieve Best Performance and Reliability

Rosemount's Pressure Portfolio is Versatile Enough to Meet All Your Needs!



Application Solutions

1151, 2088

Certified Pressure Transmitters (QT / QS) Options

Many Options!

Rosemount 3051S Series selection guide

Rosemount 3051S Coplanar[™] differential, gage, or absolute transmitter

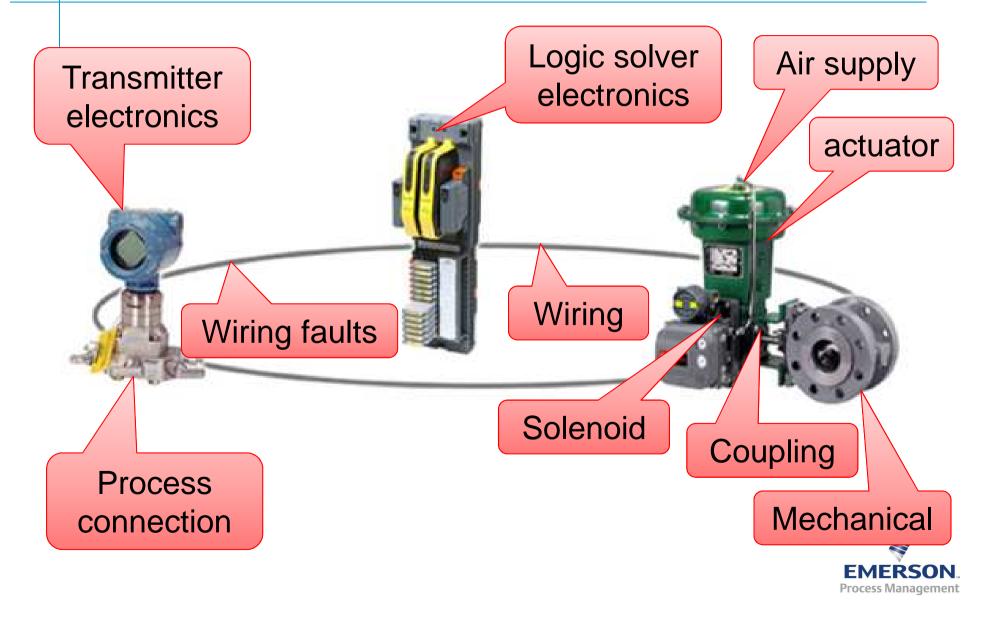
See ordering information on page 5.

- Coplanar platform enables integrated manifold, primary element, and seal system solutions
- Dual-capacitance Saturn[™] sensor technology corrects for overpressure and line pressure effects
- Calibrated spans from 0.1 inH₂O to 4000 psi (0.25 mbar to 276 bar)
- Available with 316L SST, Alloy C-276, Alloy 400, Tantalum, gold-plated Alloy 400, or gold-plated 316L SST process isolators

Rosemount 3051S In-line gage or absolute transmitter

See ordering information on page 14.

- Direct threaded connection, manifold or seal system solutions
- Piezoresistive sensor technology allows calibrated spans from 0.3 to 10000 psi (20.7 mbar to 689 bar)
- Available with 316L SST or Alloy C-276 process isolators



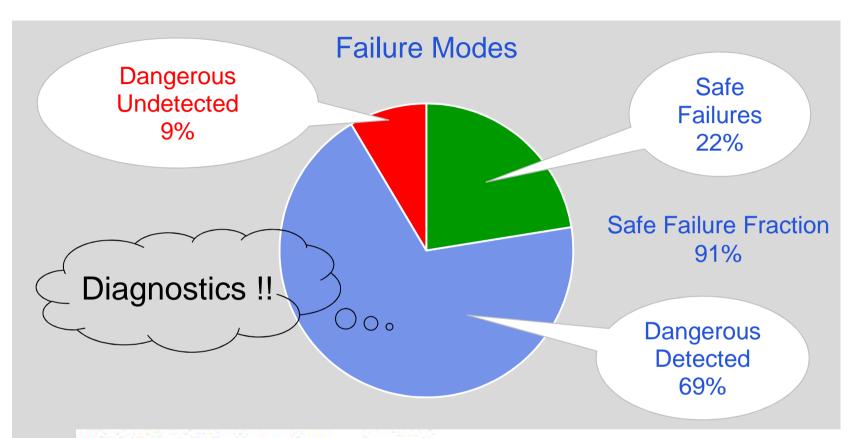
Sensor (Initiator) is part of the overall HIPPS safety function

A "Generic" image of a HIPPS system

Consider the total loop of the SIF: Where could failures occur?

Safety System element failures

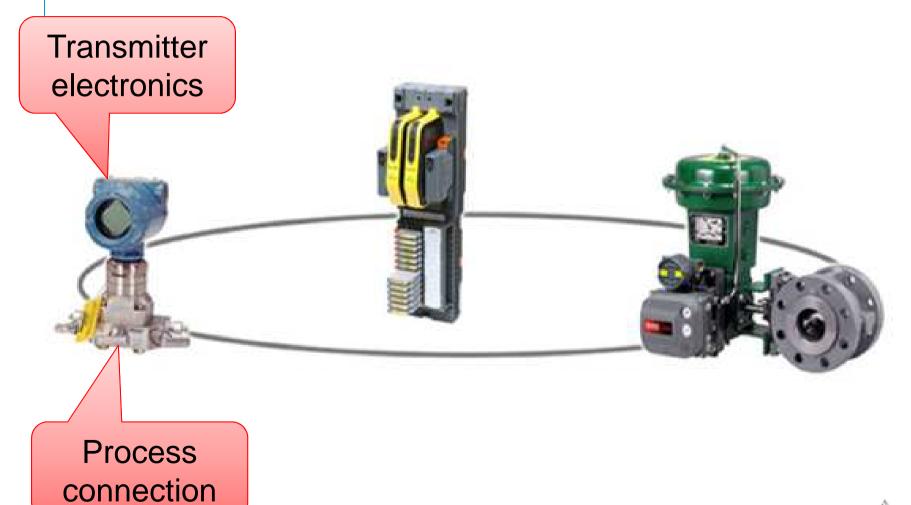
Why do we need diagnostics in Safety Instrumented Systems?


Type of Failure	Consequences for the Plant	
SAFE	Process shuts down safelyLoss of productionHazards when re-starting	
Dangerous Undetected	 Process continues to operate Important protection layer missing We do not know there's a problem 	

Product Certificates provide failure rate Data

exide	Zertifikat ROS 11 exida hereb Rosemount 3	e / Certificat / 合格証 07062 C001 y confirms that the: 051 4-20mA HART e Transmitter		É					<i>7</i> 1
The manufacturer may use the mark:	Rosemount 3051 4-20mA HART Pressure Transmitter	Random Capabilit SIL 2@HFT=0 SIL 3 For models wh SIL 2@HFT=0 SIL 3 For models wh SIL 2@HFT=0 SIL 3 FPD _{ave} an Systematic Ca The product has (SIL) 3 These a	062 C001 : SC 3 (SIL 3 Capable) y: Type B Element @HFT=1, Route 1 _H ere SFF ≥ 90%	oility					Ð
Valid until April 1, 2015. Revision 1.4 December 13, 2013		Random Capa The SiL limit in: IEC 61508 Fr Route 1,, Table Device 3051 4-20mA H Route 2,, Table Device 3051 4-20mA H	ct has met manufactures are intended to nufacturer. Instrumented Function or than stated. Om Capabilit nit imposed by the A	o achieve sufficien on (SIF) designed	it integrity a with this pr	igainst sys	stematic en	rors of de	sign
ANSI		3051 Flowmeter	08 Failure Rate	s in FIT ¹			territice*		
ANSI Accredited Program PRODUCT CERTIFICATION #1004		SIL Verification The Safety Integ			Aso	λ _{su}	λ _{DD}	λου	SFF
	avida	compliance with	mA HART Pressure Differential & Coplar	State State State State	0	84	258	32	91%
	CERTIFICATION 64 N Main St Settersville, PA 18960	Safety Manual: 3051 4-201	mA HART Pressure Absolute, Inline Gage		0	94	279	41	90%
	T-002, V3.0-3	Prefer to ROS 13/04-008 R001 V1R010/ the Fild excluded. "Refer to the Remote Seal (ROS 1105075 R001 failure rates to use when using with attached Re							Management

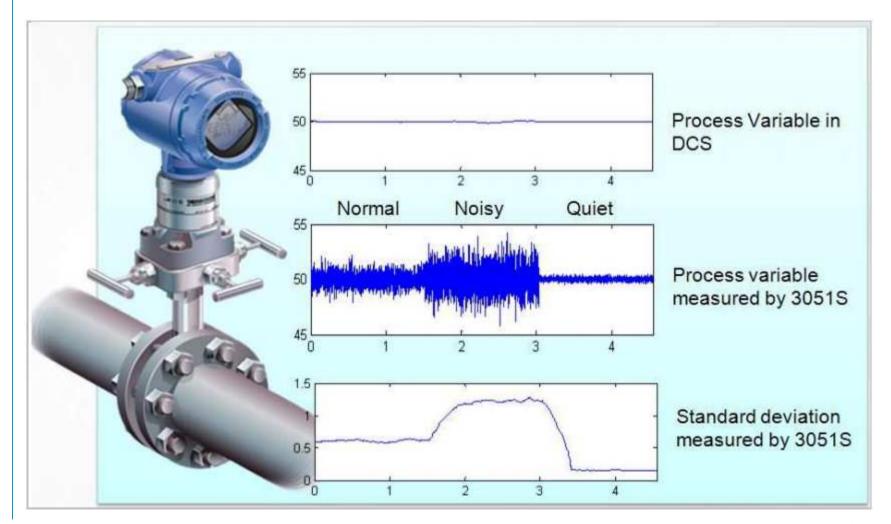
Page 2 of 2



IEC 61508 Failure Rates in FIT¹

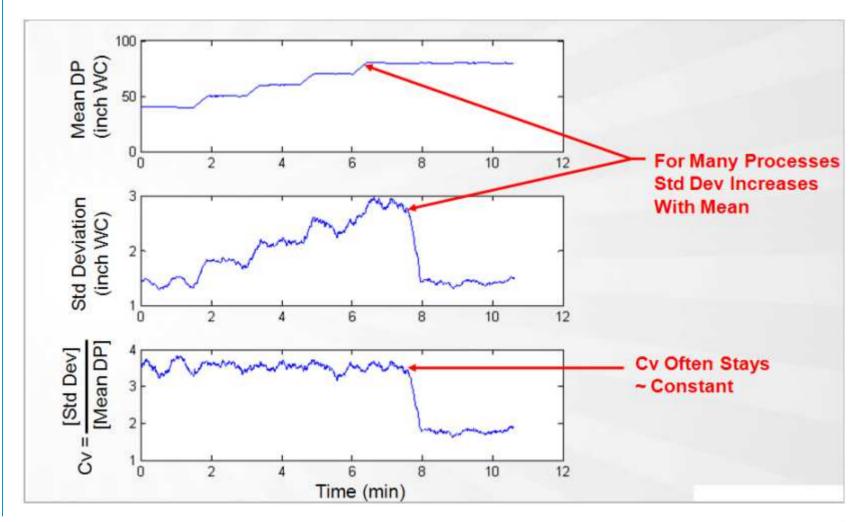
Route 1_H Table

Device	λ _{sp}	λ _{su}	λ _{DD}	λ _{ρυ}	SFF
3051 4-20mA HART Pressure Transmitter: Coplanar Differential & Coplanar Gage	0	84	258	32	91%
3051 4-20mA HART Pressure Transmitter: Coplanar Absolute, Inline Gage & Absolute	0	94	279	41	90%

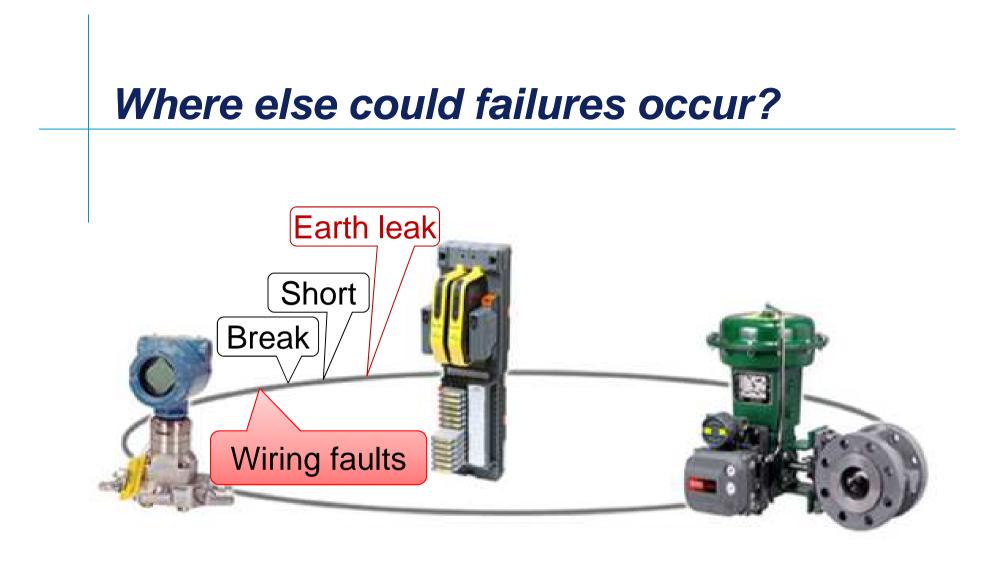

Pressure Transmitters

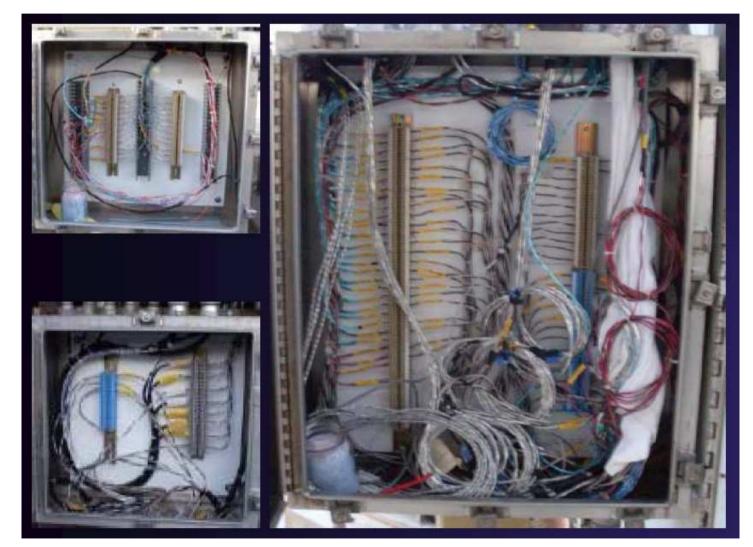
- Applications
 - Pressure
 - Level
 - Flow (DP)

Impulse line connection Plugged / Blocked

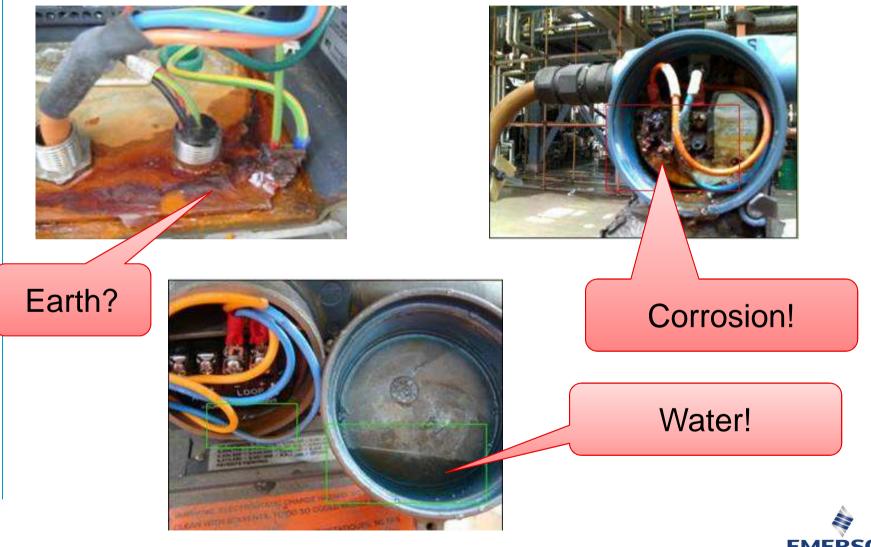


Using Statistical Process Monitoring to detect impulse line plugging

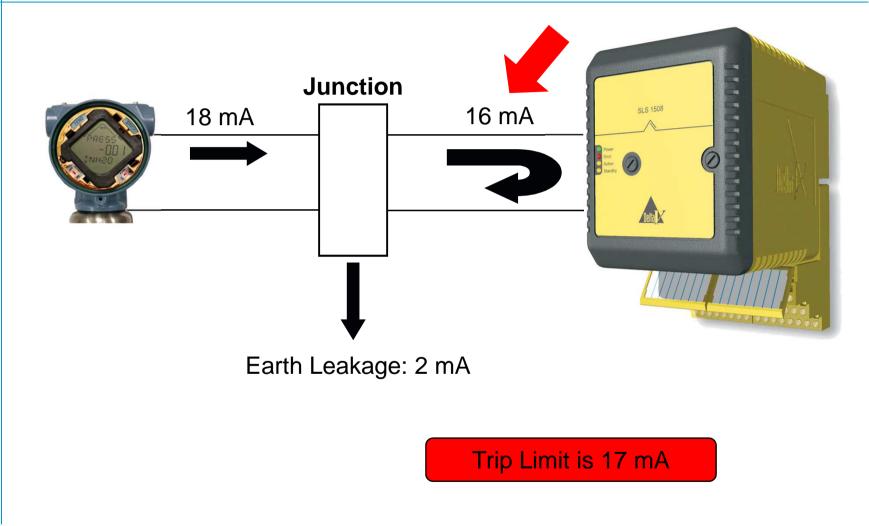

Coefficient of Variation (Cv)


Diagnostics available via HART

FIT-140 [30515_HDT Rev. 3]		• B _ D X
File Actions Help		
Configure	SPM Status Baseline Configuration Detection Configuration Operational Values	
Guided Setup	Statistical Values	
Manual Setup Hert Setup Statistical Process Monitoring	Standard Deviation Mean Coefficient of Variation 0.151438 inH20 41.582085 inH20 0.349734 %	
Power Advisory Diagnostic	SPM Detection Values	
Device Diagnostics Process Alerts	Standard Deviation Mean Coefficient of Variation	
Service Alerts	Baseline Baseline Baseline Baseline 0.140833 inH20 41.633873 inH20 0.338267 %	
	Upper Threshold Upper Threshold Upper Threshold	
	0.225334 inH2O 49.960651 inH2O 0.000000 %	
	Lower Threshold Lower Threshold Lower Threshold Lower Threshold Lower Threshold D.000000 %	
	SPM Releam Counter Number of Releams	
	141 Reset Releam Counter	
<[]		
1 Overview		
🞯 Configure		
Service Tools		
ß		
Ti	ime: Current OK Cancel Apply	Help
Device last synchronized: 11/5/2010 11:13:54 AM		11.



Wiring faults can occur in Junction Boxes

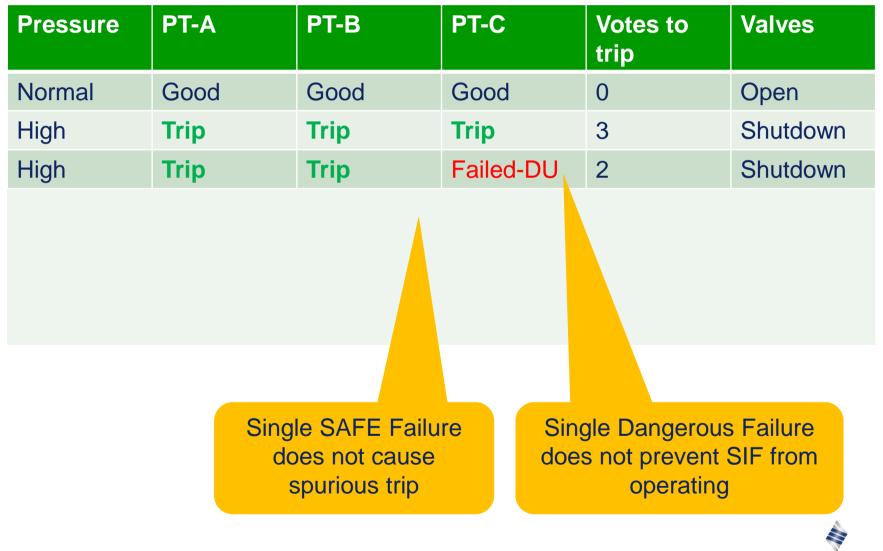


Wiring faults can occur in the field devices themselves

EMERSON. Process Management

Effects of an earth leak fault

External comparison – HART PV


Process Management

Why do we need 3 Pressure Transmitters?

- Transmitter Requirements
 - Must be suitable for the process application
 - Must meet SIL target SIL3 typically requires hardware fault tolerance (HFT=1)
 - Must not shutdown the pipeline unnecessarily (no spurious trips) if a single device fails
 - Must be able to test, maintain and repair
- 2003 (2 out of 3) voting arrangement
 - Hardware Fault Tolerance 1 = "can tolerate 1 dangerous failure and SIF still operates"
 - Single PT failure to safe state does not cause spurious trip
 - With one PT out of service for maintenance we still have HFT=1 – provided we switch to 1002 voting

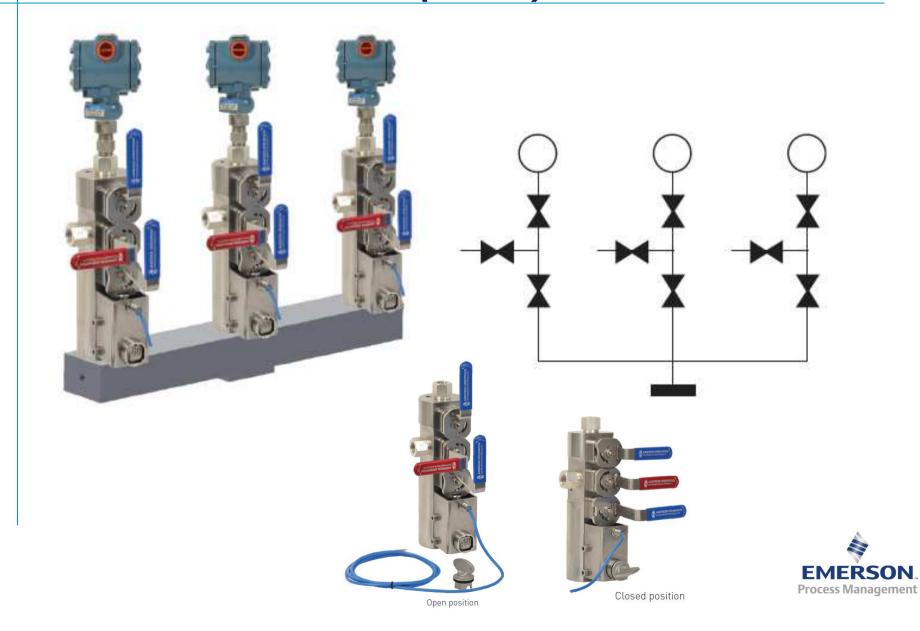
2 out of 3 architecture (2003)

EMERSON. Process Management

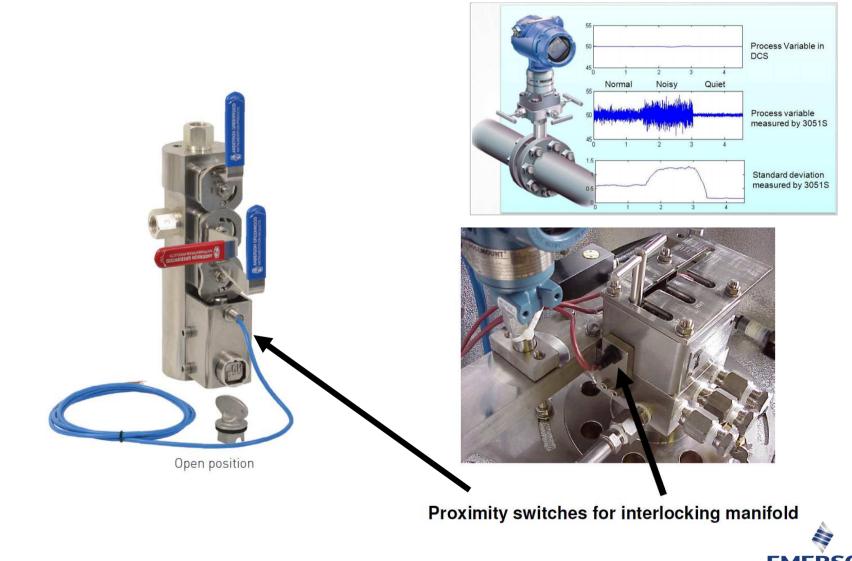
Proof testing requirements

- Proof Test Interval (Frequency)
- Type of Proof Test
 - Different tests have different coverage of potential DU Faults
- Plan should make clear which tests are required and when
- Non-disruptive test of electronics only is safer for workers, and reduces time taken
 - But does not test the pressure cell
- Removing the Transmitter introduces risks
- Test in place is preferred

Process Connection – Manifold Block-Bleed-Block(-Test)



Process Connection – Manifold Block-Bleed-Block(-Test)



Process connection

- What is the purpose of the manifold block
 - Safe way to disconnect pressure transmitters for test
 - Keep the process safe maintain hardware fault tolerance
 - Safe for the technician who must do the test
 - Prevent disconnection of more than one PT at any time
 - Enable pressure transmitter proof test in situ
 - Avoid the risks of disconnecting the PT
 - Reduces the time the PT is unavailable
- Why do we need to know if a PT is isolated ?

Can the sensor see the process?

EMERSON. Process Management

Options when a Pressure Transmitter is isolated

	Injected test pressure	Remaining voting algorithm	Remaining HFT	Consequences		
Force isolated transmitter to the trip state	Above or below trip limit – does not affect outcome	1002	HFT=1	Single dangerous failure does not defeat the SIF	Single safe failure will cause a spurious trip. Likelihood of failure during very short test duration is extremely low	
Keep the isolated	Below trip limit	2002	HFT=0	Single dangerous failure means the SIF will fail	No spurious trip on single safe failure	
transmitter in the voting algorithm	Above trip limit	1002	HFT=1	Single dangerous failure does not defeat the SIF	Spurious trip on single safe failure	

HIPPS Sensors Pressure Transmitters

Andy Crosland BDM – Safety Instrumented Systems 16 February 2016

