Radiometric Measurement

Using nucleonic technologies for extreme applications with high benefit of reliability and efficiency in O&G and Petrochemical Plants

Slide 1

11/23/2016

Ralf Matthaes

Endress + Hauser

Table of content

- Density Profiling System (DPS) in Desalter
- Petrochemical Industry Overview
- PP/PE Catalyst Feed Tank
- PP/PE Gas Phase Reactor
- Unipol Process Overview
- PTA Process
- PET Polyethylene Terephthalate Process
- Summary
- Conclusion

Overview – Applications

Applications

Oil & Gas – General / Offshore / Oil sands / Gas / Fracking / Refinery

 Petrochemical / Chemical – <u>General</u> / <u>Borstar (PP/PE) / PP Novolen / PP Chisso / Unipol (PP/PE/...)</u> <u>PE Hostalen* / PE Lupotech / PE Spherilene* / LDPE / LLDPE /</u> <u>PTA / PET / PS / PVC / PUR_MDI_TDI / Ammonia / Urea / TiO₂*</u>

 Primaries – <u>Mining General</u> / Metals: <u>Ni/Cu/Au</u> / <u>Aluminum</u> / <u>Steel</u> Minerals: <u>Uranium</u> / <u>Coal</u> Precious stones: <u>Diamond</u>

<u>Cement</u> / <u>Sand & Gravels, Suction dredger</u> / <u>Molten glass</u>

- Pulp&Paper
- Power Integrated Gasification IGCC / Coal / Biomass / Incineration
- Others

K

Oil & Gas - Refinery (Downstream)

Density Profiling System (DPS) in Desalter

Interface – Interface Layers

We offer you transparency in relation to possibilities, physical limitations and commissioning of the individual measuring principles.

Guided radar, Multi-parameter, capacitance instrumentation or radiometry

Interface – Comparison of measuring principles

	Guided radar Levelflex FMP51/52/54	Multiparameter Levelflex FMP55	Capacitance Liquicap FMI51/52	Radiometry Gammapilot FMG60		
Clear interface liquid / liquid	Total level + interface layer	Total level + interface layer	Interface layer	Interface layer (Total level with separate measurement)		
Interface with emulsion layer liquid / liquid	Not possible	Total level + interface layer	Interface layer	Interface layer + emulsion thickness (Total level with separate measurement)		
 Interface with emulsion layer liquid / liquid Interface liquid / solid Multiple layer interfaceliquid / solid 	Not possible	Not possible	Not possible	Interface- density-profile (Total level with separate measurement)		
	/23/2016 Ralf Matth	1965	Fn	dress+Hauser 🚮		

Interface – Which instrument for which API Grade

Generic Oil	API	Density	Interface	Interface	Interface	Density
Name	Grade	at 15,6 °C	Coaxial	Stillingwell	Grid	Profiling
Light	45 - 31.1	< 870 kg/m³	Yes	Yes	Yes	Yes
Medium	31,1 - 22,3	870 - 920 kg/m³	Yes / No	Yes	Yes	Yes
Heavy	22,3 - 10,0	920 - 1000 kg/m³	No	Yes / No	Yes	Yes
Extra Heavy	<10	> 1000 gk/m³	No	No	Yes	Yes

K

Slide 8

Interface application from an European refinery

... after a while, that's the risk

Capacitance probe with special grounding rods for sticky applications – strong build up limits the application. Cleaning required.

K

Ralf Matthaes

Endress+Hauser

Radiometric Measurement - Sizing Interface / Profile

Interface and DPS – Movie

V

- Source container with
 rod extension for source
 to be installed in a dip
 pipe
- 6-10 detectors are mounted on the tank wall
- The measuring range is subdivided into zones
- Density value is calculated for each zone

Density Profiling – Calculation of density

Density Profiling – Calculation of density

Data Report											
Detector	Detector Distance (source to)		Dose Rate (µSv/h)		Puls Rate (cps)			Detector	Accuracy		Leastion
No.	Inn. Wall	Detector	Max.	Min.	Max.	Min.	Delta	Length	kg/m³	%	LUCALIOII
1	890,2	1173,8	3,07	1,03	6143	2070	4074	200	8,7	4,3%	1
2	<mark>858,5</mark>	1137,3	4,00	1,40	<mark>8009</mark>	2804	5205	200	6,5	3,3%	1
3	833,3	1108,0	4,97	1,79	9932	3586	6346	200	4,7	2,4%	1
4	814,9	1086,5	5 , 82	2,15	11644	4300	7344	200	3,2	1,6%	1
5	803,7	1073,4	6,42	2,40	12839	4806	8033	200	1,7	0,9%	1
6	803,7	1073,4	6,42	2,40	12839	4806	8033	200	1,7	0,9%	Ļ
7	814,9	1086,5	5 , 82	2,15	11644	4300	7344	200	3,2	1,6%	↓
8	833,3	1108,0	4,97	1,79	9932	3586	6346	200	4,7	2,4%	↓
9	<mark>858,5</mark>	1137,3	4,00	1,40	8009	2804	5205	200	6,5	3,3%	↓
10	890,2	1173,8	3,07	1,03	6143	2070	4074	200	8,7	4,3%	↓

- Average density calculation for all layers
- Continuous interface measurement between all layers
- Continuous reading of the emulsion layer thickness.

Comparison – Solution single / multiple source

Density Profiling System (DPS) in Desalter

Ralf Matthaes

Ľ

Slide 19

11/23/2016

Density Profiling System (DPS) in Desalter

Slide 20

11/23/2016 Ralf Matthaes

Density Profiling System (DPS) in Desalter

K

Slide 21

11/23/2016

Ralf Matthaes

Endress+Hauser

Desalter – Gaps of improvement / optimization

- Heat exchanger \rightarrow energy effiency
- Demulsifier injection \rightarrow reduction of high costs of demulsifier
- Oil quality \rightarrow less downstream corrosion
- Water quality \rightarrow easier treatment
- Water control \rightarrow separation efficiency

Desalter – Optimization of Demulsifier chemicals

- Demulsifier = Emulsion breaker / neutralize the emulsifier agent
- A demulsifier is implemented to optimize the process. It effects the water-oil interface
- It is common that a demulsifier chemical is also added, usually 0.005 to 0.01 lb/barrel (= 1.4 ml/100 l to 2.85 ml/100 l).
- Note: 2ml/100l = 2226 l / 70,000 bpd => approx. 22,000 USD / day

spending \rightarrow **possible saving: 1000 USD / day**

Desalter – DPS visualization for optimization

Slide 24

11/23/2016

Desalter – Tank Desanding

- Desanding twice a month in average
- Average costs of US\$ 24,000 / each
- More than US\$ 1 million during 24 month
- With DPS a saving of 400k USD is possible

Desalter – Demulsifier / Additives

- Additives attain a faster separation of water and oil.
- Savings of additives in the desalting process of US\$ 1000 per day on average.
- The investment in one Profile Vision unit is thus already amortized after approx. 6-12 months.

Endress+Hauser

V

Desalter – Refineries with potential for DPS

- Low API grade oil (<25)
- Old desalter vessels with low efficiency
- Changing crude with different API grades
- Any issue with build-up / coating with other measuring

technologies

- Any issues with higher sulfur content
- Whenever emulsion > 100mm is present or is being

created

K

Desalter – Conclusion

Advantages – Density profile measurement in desalting processes

- Reliable reduction of salt in the process
- Reduction of plant downtimes and maintenance costs due to improved capacity utilization
- Salt build-up can be prevented in good time by exact measurements and process control
- Optimized use of chemicals due to an efficient desalting process
- Return of Invest typically 6-12 month

What about in Petrochemical plants?

Is the return of invest measurable?

K

Slide 29

11/23/2016

Ralf Matthaes

Petrochemical Industry – Overview

Services

Radiometric Measurement

Unipol – PP / PE / HDPE / LLDPE

Slide 31 11/23/2016 MVB

Unipol Process Overview

Production process of linear low-density polyethylene (LLDPE/HDPE)

Fig. 1: UNIPOL[™] LLDPE/HDPE process using an fluidized bed reactor

Polymerization is possible in

- Solution phase
- gas phase reactors (common industrial solution).

Fluidized bed Reactor

Fluidized bed reactor

It is highly desirable that these chunks be detected and removed before they become too large and disturb the process. These chunks are of a higher density than the fluidized bed and settle in the bottom of the reactor. There, they may be detected by the chunk detector.

LLDPE or PE-LLD

- Process based on Ziegler-Natta-Catalyst/Method
- Process conditions
 - 1-50 bar
 - 20 150 °C
- LLDPE
 - has a defined by a density range of 0.87–0.94 g/cm³
 - is produced as an granulate

Chunk detection

Chunk has a higher density and is moving around in the vessel. The target is to detect the chunk with the highest and fastest possibility

V

Chunk detection

At the same detector integration time of the cases (1) and (2) the polymer particles which move around with same velocity create a different pulse rate [cts]. (1) will detect more chunk and create at least in sum the higher pulse rate.

K

Chunk detection

Summery: Impact of integration time, number and length of detectors

(1) As longer as the detector length is as more chunk will be detected but as weaker the signal is. We recommend a detector length of 400 mm

(2) As more detectors you mount around round the vessel as more chunk will be detected but as higher are the costs. We recommend 8 to 12 detectors

(3) As higher the integration time is as higher is the possibility to detect chunk but as weaker the signal is.

Chunk detection

- The detector orientation enlarges additionally the probability to detect chunks
- The highest probability is here given with an mounting angle of 45°
- The best count rate [cts/s] is given with an FMG60 with a length of400 mm

K

Chunk detection setup

With the number of detectors the probability to detect chunk will also increase.

- source of nuclear radiation located in the center of the reactor
- array of radiation detectors spaced around the perimeter of the outside of the reactor
- radiation is absorbed by the chunk and the change in the radiation field strength is sensed at the detector

Side view with support brackets

Top view with support brackets

Application for small vessel IDs

Chunk size

Nomenclature:

density chunk [φ_{ch}] density fluidized bed [φ_{fb}] average density beam path [φ] distance source detector [R] size chunk [x]

$$R \cdot \varphi = x \cdot \varphi_{ch} + (R - x) \cdot \varphi_{fb} \tag{1}$$

$$x = \frac{R \cdot (\phi - \phi_{\rm fb})}{\phi_{\rm ch} - \phi_{\rm fb}} \tag{2}$$

The fluctuation of the bed density is written as

$$\varphi_{fb} = \varphi_{fb\ min} \dots \varphi_{fb\ max} \tag{3}$$

It's considered that chunk can be reliably detected if the measured average density is at least 20 % higher (that means in equation (4) times 1,2) than the highest bed density at the lowest bed density characterized by

$$\varphi \ge 1, 2 \cdot \varphi_{fb \ max} \quad \text{at}$$

$$\varphi_{fb} = \varphi_{fb \ min} \quad (4)$$

Calculation example

Example: calculation of the chunk size

The calculation of the chunk dimension depends on different process conditions ([p], [v], [t], ...). The following examples give a small overview to the influence given as $\pm 10\%$.

$$\varphi_{fb\ min} = 0.9 \cdot 128 \approx 115 \ \frac{kg}{m^3}$$
$$\varphi_{fb\ max} = 1.1 \cdot 128 \approx 141 \ \frac{kg}{m^3}$$

$$x = \frac{R (1,2 \cdot \varphi_{fb \max} - \varphi_{fb \min})}{\varphi_{ch} - \varphi_{fb \min}}$$
$$x = \frac{2210 \cdot (1,2 \cdot 141 - 115)}{900 - 115}$$

x = 152 mm

PTA – Process

K

PTA – Oxidation Reactor

K

PTA – Oxidation Reactor / Devices + Solution

PTA – Oxidation Reactor / Devices + Solution

PTA – Oxidation Reactor / Installation source container

PTA – Oxidation Reactor / Position of source

PTA – Oxidation Reactor / Linearization

Sized linearization:

PTA – Oxidation Reactor / Pictures

Detector for level

- Easy start-up
- High reliability
- All wetted parts made from SS316L
- Perfect engineering support

Both detectors with water cooling jacket

Detector for

point level

PET Polyethylene Terephthalate – **Process**

K

PET – Finisher

Challenges:

Level measurement in the finisher at the inlet and outlet.

Level at the inlet and outlet are related to the viscosity of the product.

- Rotating installation inside
- No flat surface due to the high viscosity of the medium.

Ralf Matthaes

11/23/2016

Endress+Hauser

V

Slide 55

PET – Finisher

PET – Finisher / Solution with rotation direction

K

PET – Finisher

the correct rotation direction in combination with the configuration of the devices

Wrong configuration

Slide 58

with already 50% level.

Summary

Slide 59

11/23/2016

Ralf Matthaes

Over 50 years of experience!

V

Products which fit your needs!

Modulator – Suppression of external radiation

Ralf Matthaes

- First effective solution for suppression of external radiation from None Destructive Testing (NDT) or self radiation media
- Modulator is a turning absorber, producing a modulated signal.
 Detector separates the useful modulated signal from interference radiation

Without Modulator

Strong influence from external radiation

11/23/2016

Modulator

With Modulator Reliable measurement, stable signal

K

Slide 62

Strong support worldwide required!

Conclusion

- Gamma, if other physical principle fail
- Low radiation due to high sensitive detectors
- Reliable measurement for extreme applications
- Process Know How required
- 3D engineering to avoid surprises

Thank you very much for your attention

Slide 70

11/23/2016

Ralf Matthaes

