

ASSOCIAZIONE TERMOTECNICA ITALIANA

VALVOLE DI CONTROLLO E INTERCETTAZIONE, SISTEMI DI AZIONAMENTO, DISCHI DI ROTTURA E DISPOSITIVI DI SICUREZZA UTILIZZATI NELL'INDUSTRIA DI PROCESSO

Milano, 18 Aprile 2018 Auditorio TECNIMONT

Flow Coefficient validation through Computational Fluid Dynamics (CFD) of Control Ball Valves for Oil&Gas applications

Abbiati Luigi

Experience In Motion

FLOWSERVE VALBART – FLOW CONTROL DIVISION

Numbers matter

 Correct sizing & selection of a control value is a key activity, that relies on an extensive database of values, coefficients and parameters.

Instrument datasheet

Control valve

How & where to get all those numbers for an entire product range?

Experience In Motion

Experimental testing

 Standards IEC 60534-2-3 or ISA 75.02, define testing procedures, test rig arrangement, measurements to determine the main variables of interest (C_V, F_L, X_T, etc..)

Experimental testing

Experimental testing is *fundamental*, but has practical limitations:

- Test rig capacity & availability
- Investment in prototypes

Usually, few prototypes of small size can be tested

What about the untested valves?

Extending the experimental results

- Not all the dimensions/components scale accordingly with the valve size
- Fluid dynamics do not simply scale with the size
- Extrapolation of results from few concentrated points is not recommendable

Simple scaling of the results is not accurate enough, especially when considering more "complicated" geometries.

Computational Fluid Dynamics

+ Pros

- Virtual, no real physical prototypes
- Can simulate different conditions
- Cost & time saving

- Cons

- ...Still need some money investment
- Need to be used with adequate knowledge

3D Model

- Must be accurate...
- ...but not over-detailed
- Must take advantage of symmetries

Full valve 3D model

Save computational resources & time without sacrificing accuracy!

Mesh

- Size
- Quality of the mesh (Skewness, Smoothness, Aspect Ratio)
- Sensitiveness of the solution to the mesh

Models & Boundary conditions

- ...must be set correctly (type, location, etc..)
- Identify a proper set of boundary conditions to verify and finetune the CFD methodology

Check solution quality

- Convergence & Stability
- Residuals
- Monitor of other variables of interest

CFD (first runs) vs. Experimental testing – Comparison

- Notable differences observed:
 - 1. C_V values at full opening (for some trim solution)
 - 2. C_V values at minimum openings

1. C_V values at valve full opening

Valve geometry changes with the opening

Different dissipation effect/mechanism may become relevant at different opening

- 1. C_V values at valve full opening
- Introduction of pipe wall roughness into the simulation

Significant increase of the CFD accuracy at full open condition

2. C_V values at valve minimum openings

While at small openings, small differences in the ball rotation can cause relevant differences in the areas

Precise positioning of the ball during the test is important at low openings to get the correct C_V

2. C_V values at valve minimum openings

Measures of tested valve backlash where used to correct the CFD model openings through a simple model

Increased C_V accuracy vs. test at lower openings, with minimal to no effect for mid-large openings

CFD Fine-tuning observations:

- Both the adjustments made to fine-tune the CFD methodology proved to be:
 - 1. Consistent with the *experimental data*
 - 2. Beneficial for the accuracy of the results where they meant to be so, irrelevant elsewhere

These adjustments have been applied to different values and compared to experimental data for final validation

CFD vs. Experimental testing – Before and after

Experience In Motion

CFD (fine-tuned) vs. Experimental testing – Comparison

Experience In Motion

Extending the experimental results through validated CFD methodology

CFD campaign based on a *matrix of simulations*

- Should guarantee *adequate coverage* of the product range
- Should consider
 specific product design

Trim type	Pressure class: ANSI 600										
	10"	12"	14"	16″	18″	20″	24″	28″	30″	32″	36″
STD		~					~				~
Z1-2		~		~			~				
Z2-4		✓		~			~		~		✓
N1-3		~		✓			✓				
N2-3		✓		~			~				
N2-4		✓		✓			✓				

Thank you!

Experience In Motion FLOWSERVE VALBART – FLOW CONTROL DIVISION