

Safety devices for overpressure protection. Rupture discs: applications, sizing, and types

Cristian Barbi and Mario Modena DonadonSDD

- Milano, 18 Aprile 2018
- Auditorio TECNIMONT

Summary

- Devices for overpressure protection
- Pressure Safety Valves and Rupture discs
- Rupture Disc properties and application parameters
- Evolution of rupture disc models and performance
- Evolution of manufacturing technology
- The laser scoring process

ion ire discs ication parameters and performance hology

Pressure Safety Valves and Rupture Discs

- Pressure Safety Valves and Rupture Discs are **Pressure Safety Devices** \bullet designed to protect plants and equipment from overpressure conditions Pressure Safety Valves (PSV) are **reclosing** safety devices ullet
- RD are **non-reclosing** safety devices \bullet
- When the overpressure condition that has caused the opening of the device \bullet ceases, PSV recloses, instead RD will not reclose
- Both devices **protect** from overpressure, however PSV is **mechanical** and RD lacksquareis **simple**
- PSV must be installed in **vertical** position; RD may be installed in **every** lacksquareposition
- These devices may be used as **alternative** or **complement**. \bullet

Installation of PSV and RD

- When used together a PSV, the RD may be installed:
 - In parallel, useful for ensuring an additional protection level for the same or different plant failure case (typical application: protection of liquefied gas tanks)
 - Downstream, useful for protecting the valve from corrosive fluids that may be present in the discharge piping (typical application: petrochemical plants where all effluents are collected in a common piping leading to the flare)
 - Upstream

Main Advantages of RD upstream a PSV

- Protection of the valve from corrosive or fouling process fluids
- Reduction of valve maintenance costs (cleaning and calibration)
- Reduction of manufacturing cost of the valve that may be fabricated with less expensive materials

Total Ownership Cost

- These advantages more than offset the cost of installation of a rupture disc upstream a PSV
- Leaks and maintenance requirements of PSV, due to corrosion or fouling of the seat (very important for dangerous fluids), are avoided
- This means a reduction of **Total Ownership Cost**

Rupture Disc properties and applications

- RD are differential devices: they open when the pressure difference between upstream and downstream is above the set pressure
- RD are non-reclosing devices: once the disc has opened, it will not re-close (and all the fluid is discharged)
- Opening (or bursting) is a very rapid phenomenon and therefore the RD is able to protect equipment also from a very steep pressure increase.

RD application parameters

 Specified rupture pressure is the bursting pressure quoted (with a coincident temperature) when defining the bursting disc requirements

Application parameters 2

• **Tolerance** is the range of pressure between the specified minimum and maximum bursting pressure, it is expressed in percentage or absolute values

Application parameters 3

 Operating ratio is the maximum recommended ratio between operating pressure and minimum bursting pressure

Set Pressure, Tolerance and Operating Ratio

Maximum burst pressure = 105 bar g

Marked burst pressure = 100 bar g

Minimum burst pressure = 95 bar g

Maximum recommended operating pressure = 100 x 0,95 x 0,95 = 90,25 bar g

Application parameters 4

- Vent area: cross-section area available for discharge of fluid
- Key parameter for sizing the vent area:
 - mass flow rate
 - molecular weight
 - rupture pressure
 - discharge coefficient

Rupture disc materials

- First choice is metal.
 - The rupture disc is thin and therefore expensive materials are frequently used.
 - Common choices are cold rolled coils of: Stainless Steel (316) or high performing alloys like Inconel, Hastelloy, Monel, but also Nickel, Titanium, and Tantalum.
- Graphite is also used in many cases, especially when the disc is used in contact with highly corrosive fluids

A) Base model – solid disc

 These discs are flat or domed in the direction of the bursting pressure and are formed by a single layer of metal or graphite

Calibration

- Rupture pressure depends from 3 factors
 - Active diameter
 - Material thickness
 - Material properties

Performance and applications

- Main drawbacks are:
 - Burst in a non-predictable geometry
 - Fragment
- Generally used for small diameter, low cost and mass applications (e.g. airbags)

B) Composite discs

- They are made of at least two layers:
 - One metal layer with calibration slits (or through cuts)
 - One continuous layer that ensures gas tightness, normally a film of PTFE or other suitable polymer

Giornata di Studio Valvole - 18 Aprile, 2018¹⁷

Performance and applications

- Burst tolerance and operating ratio are generally better than in solid discs
- The calibrated part of the disc will not fragment; the membrane will fragment (but if it is a thin PTFE film, fragmentation is going to have little or no impact)

Giornata di Studio Valvole - 18 Aprile, 2018¹⁸

Performance and applications

- The composite disc design allows the manufacturing of RD with low and very low burst pressure
- DonadonSDD has manufactured discs bursting at 5 millibar
- This disc model is especially suited for protection of tanks both in pressure and in vacuum and for biogas digesters

Giornata di Studio Valvole - 18 Aprile, 2018¹⁹

C) Scored forward acting (tension loaded)

 These discs are made with a single metal layer and are flat or domed in the direction of the bursting pressure.

Giornata di Studio Valvole - 18 Aprile, 2018²⁰

Calibration

- Calibration is obtained by scoring (non-through) cuts)
- Rupture pressure depends from design and depth of the scores

Performance and applications

- Scored discs have lower tolerance than solid and composite discs and better operative ratio
- They do not fragment
- Frequently used in the process and chemical industry

D) Reverse acting discs (compression loaded)

- Scored reverse acting discs are made with a single layer of metal domed against the direction of the bursting pressure
- When the pressure differential between upstream and downstream is above the **resistance to compression** of the dome, this will reverse.
- The disc is **scored** and after reversal will **tear along the scores** lacksquare

Calibration

- Calibration is obtained by controlling the height of the dome
- Defects may be introduced in the dome in order to lower its resistance and to improve the reversal process

Score design 1

- There are two main designs:
 - The common design is with the score along the circumference (perimeter)
 - The disc will open with one petal retained by a non-scored sector and, eventually, by a dampener

Giornata di Studio Valvole - 18 Aprile, 2018²⁵

Score design 2

- Also cross scored design is possible.
- Rupture discs with this design have good resistance to fragmentation and large discharge area

Giornata di Studio Valvole - 18 Aprile, 2018²⁶

Performance and applications

- The reverse / compression loaded design allows very tight tolerance and very good operating ratio
- Resistance to repeated pressure cycles is also extremely good.
- They do not fragment
- They are adequate for gas and liquids, however full liquid applications require special care because of possible pressure drop during the reversal / opening phase
- Standard model in oil and gas, chemical and petrochemical and other process industry applications

Giornata di Studio Valvole - 18 Aprile, 2018²⁷

Manufacturing technology

- The scores are generally made by stamping the disc with a die in a press
- This technology is able to produce high quality rupture discs but requires high capital costs and careful tool maintenance

Laser scoring technology

- DonadonSDD has developed and implemented during the last 10 years an innovative technology based on laser scoring
- This technology may be used for manufacturing both reverse and forward acting scored discs
- It is very flexible both in score design and in manufacturing planning

Score design

- Laser scoring allows to control and optimize
 - score line design,
 - score depth and
 - score profile
- We can score without defects even very thin (20) micron) metal sheets

Cross scored discs with 6 petals

- DonadonSDD has introduced commercially the cross scored discs with 6 or more petals (standard model has 4 petals)
- Key advantages of these models are:
 - Large opening area
 - Resistance to fragmentation even at high burst pressure

Performance and applications

- The **DonadonSDD SCR** model (reverse cross scored with 6 petals) has a discharge area superior to that calculated for the inscripted hexagon and a certified flow resistance coefficient (K_{Rg}) of 0,48.
- This means that head loss through the RD is less than that caused by a pipe length of half diameter)

Laser scoring

- No mechanical tool that may wear with time is required
- Production planning is very flexible because set-up is fast and inexpensive and therefore small lots of rupture discs are economically viable, fast deliveries are possible and rush orders can be handled

Patent coverage

 Donadon SDD has filed many patent applications (some already granted) covering different aspects of the laser scoring process

Additional information

Additional information is available from

- Internet site : www.donadonsdd.com
- Or direct enquiry

Thank you for your attention

Questions ?

