MISURE FISCALI

Milan, 25.10.2018

Auditorium TECNIMONT

Revamping a metering system
1. Introduction
2. Revamping of a metering station: challenges and constraints
3. Ultrasonic flow meters: a good option for system revamping
4. An example
1. Introduction
SOCRATE SPA

During the last 20 years of activities, SOCRATE SPA has successfully engineered, procured, installed, commissioned and revamped the following products and plants:

- Skid mounted Metering Systems.
- Unidirectional and bidirectional Pipe Provers.
- Product Quality Skids (e.g. analizers, automatic sampling systems).
- Control Systems with dedicated flow computers.
- Sheltered Control Rooms.

SOCRATE SpA is fully qualified to play a role of EPC Contractor, in every step of the process.
Socrate Spa is able to supply turnkey metering systems applying various technologies, (e.g. turbine, ultrasonic, coriolis, pd meters, orifice fitting), including trained in-house resources and dedicated assets.

All metering systems are designed according to the most recent international standards (API, AGA, ISO) and customized to Client requests.

From design to final start-up Socrate Spa is committed to fully satisfy the Client specification in terms of time and quality.
Introduction

2. Revamping of a metering system: challenges and constraints
Definitions

A metering system comprises a meter and its ancillaries.

The principal and essential part of the system is the meter.

The meter is an instrument intended to measure continuously the quantity of liquid or gas passing through the measuring device at metering conditions.

The associate metering devices are those sensors connected to the calculator in the view of executing corrections/conversions.

The ancillaries are equipments devoted to perform specific tasks or functions.
Definition of design constraints

Essentially two types of constraints intervene during sizing, selection and design of a metering system:

- Environmental constraints
- Measurement constraints

These constraints drive all the life cycle of the product setting the “System Requirements”.
Environmental constraints

The first type of constraints are related to the environmental context of the installation, in terms of:

- Metrological regulation
- Installation context
- Origin and destination of measured products
- Fluid characteristics and relevant properties
- Safety regulations
- Level of manned activities requirement
- Actual situation (in case of retrofit, revamping, development)
- Time frame and others
Apart the International context (variable ...) being able to require a particular organization (particularly for commissioning and startup), one of the essential constraints is the system location and installation requirements.

Beyond national or international Regulation, Laws, Standards and other Directives, specificities resulting from practices and "traditions", or from "customer" standards can be imposed.

Specific constraints can appear in the project, in particular in the research of optimal use of existing parts (compatibility, operating conditions, maintenance... after sale).

Specific requirements come primarily from local context and "customer" rules or heritage.

These constraints become of the essence for revamping and retrofitting project.
Modification of an existing installation for performance improvement, regulatory compliance or process modifications requires a particular approach having to integrate all previously evoked parameters.

The connection of a new system in the hearth of a refinery, on an offshore platform or on a truck does not generate the same issues as the installation of a metering system... in the middle of a desert!

- Straight lines (upstream/downstream)
- System position/elevation
- Access to various devices
- Maintenance and Verification facility (including proving)
- Electric and/or Pneumatic networks
- Others

- In all cases, a very detailed survey is crucial.
Revamping a metering system

Measurement Constraints

The measurement constraints are more technical and define the details of the metering systems, in particular:

- The design standards to comply with
- The performance level
- The primary element
- Any other additional device or feature
- The operations and the maintenance
- The periodical assessment of the system
3. Ultrasonic flow meters: an option for system revamping
Flow velocity measurement using transit time ultrasonic flow meter consists in measuring the difference of "travel" time of an ultrasonic wave in the direction of the flow and in the opposite direction.

In the direction of flow, the distance is covered at a speed equal to the speed of sound (celerity) plus the mean flow velocity. In the opposite direction, the same distance is covered at a speed equal to the speed of sound (celerity) minus the mean flow velocity.

<table>
<thead>
<tr>
<th>Diameter (mm)</th>
<th>(\Delta t) (s)</th>
<th>(E(\Delta t)) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>10(^{-6})</td>
<td>10(^{-8})</td>
</tr>
<tr>
<td>300</td>
<td>3x10(^{-6})</td>
<td>3x10(^{-8})</td>
</tr>
</tbody>
</table>

\[
t_1 = \int_0^L \frac{dl}{c - v_z(l)\cos\theta}
\]

\[
t_2 = \int_0^L \frac{dl}{c + v_z(l)\cos\theta}
\]

\[
v_{\text{path}} = \frac{L(t_1 - t_2)}{2t_1t_2\cos\theta}
\]
Ultrasonic flow meter principle (some details)

More than one acoustic path is normally used.

Disposition of the path can vary from model and from manufacturer.

The most common path integration method is Gaussian Type, however other solution (e.g. Tcheybechev) have been used.

Gaussian integration method leads a proper definition of the chordal positions and their relevant weights.

E.g. 2 paths:

\[
\begin{align*}
\text{position} &= \pm \frac{1}{\sqrt{3}} \\
\omega_{1,2} &= 1
\end{align*}
\]

Path velocities integration rule

\[
v_{\text{meas}} = \sum_{i=1}^{n} w_i v_{\text{path},i}
\]

The most common number of paths is four, for which

\[
\begin{align*}
x_{1,2} &= \pm 0.339981 \\
x_{3,4} &= \pm 0.861136 \\
\omega_{1,2} &= 0.652145 \\
\omega_{3,4} &= 0.347854
\end{align*}
\]
Ultrasonic flow meter principle – velocity profile

Velocity profile may alter the ultrasonic waves flight times, ultimately the measurement accuracy.

\[
\Delta t = \frac{2\cot\theta}{c^2} \int_{-\sqrt{a^2-h^2}}^{+\sqrt{a^2-h^2}} V(h^2 + x^2)dx
\]

This simple mathematical model was tested with two velocity profiles:

- **Turbulent flow (n=6)**
 \[
 V(r) = \frac{(1 + 2n)(1 + n)}{2n^2} V_m (1 - \frac{r}{a})^n
 \]

- **Laminar flow**
 \[
 V(r) = 2V_m [1 - (\frac{r}{a})^2]
 \]

Methane in a ID=730 mm pipe
Vm=5 m/s,
P=70 bar
Ultrasonic flow meter principle – uncertainty contribution due to measurement and calculations

<table>
<thead>
<tr>
<th>Term</th>
<th>Type and effect</th>
<th>Contribution</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transit times</td>
<td>Repeatability</td>
<td>Turbulence, Incoherent noise, Coherent noise, Clock resolution, Electronic stability, Spurious signal detection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Systematic</td>
<td>Possible deposit at transducer level, Sound refraction, Beam reflection</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eliminated with calibration or recalibration</td>
</tr>
<tr>
<td>Mathematical</td>
<td>Systematic</td>
<td>Inaccuracy of integration model</td>
<td></td>
</tr>
<tr>
<td>Installation</td>
<td>Systematic</td>
<td>Pipe configuration, In flow profile (different from calibration), Initial wall roughness and roughness along time, Wall deposit, Use of Flow conditioner</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eliminated if USM is calibrated with FC</td>
</tr>
<tr>
<td>Meter body</td>
<td>Systematic</td>
<td>Measurement uncertainty of dimensional quantities, Out of roundness, P&T correction inaccuracy</td>
<td>Eliminated with calibration or recalibration</td>
</tr>
<tr>
<td>Calibration</td>
<td>Systematic</td>
<td>Calibration laboratory uncertainty and repeatability, USM repeatability during calibration</td>
<td></td>
</tr>
</tbody>
</table>
Ultrasonic flow meter principle – uncertainty contribution due to calculation of gas parameter

<table>
<thead>
<tr>
<th>Term</th>
<th>Type and effect</th>
<th>Contribution</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>Systematic</td>
<td>Uncertainty and repeatability of the densitometer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Density temperature\pressure correction (calibration and inline)</td>
<td></td>
</tr>
<tr>
<td>Compressibility</td>
<td>Systematic</td>
<td>EOS model uncertainty</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GC (or other analysis) uncertainty</td>
<td></td>
</tr>
<tr>
<td>Pressure</td>
<td>Systematic</td>
<td>Transmitter uncertainty</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stability of the instrument</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RFI effects on instrument</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Environmental conditions (P,T)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mounting</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vibration</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>Systematic</td>
<td>Transmitter\element uncertainty</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stability of the instrument</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RFI effects on instrument</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Environmental conditions (P,T)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mounting</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vibration</td>
<td></td>
</tr>
<tr>
<td>Flow computer</td>
<td>Systematic</td>
<td>Calculations</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal acquisition loop</td>
<td></td>
</tr>
</tbody>
</table>
Uncertainty of the measurement, simplified model

\[
\left(\frac{u_c(q)}{q}\right)^2 = u_{cal}^2 + u_{op}^2 + u_{com}^2 + u_{fc}^2
\]

Uncertainty of the inline volumetric flow rate

\[
\left(\frac{u_c(q_s)}{q_s}\right)^2 = u_c^2 + u_p^2 + u_t^2 + u_{Z/Z_0}^2
\]

Uncertainty of the standard volumetric flow rate

\[
\left(\frac{u_c(E)}{E}\right)^2 = u_{qs}^2 + u_{Hs}^2
\]

Uncertainty of the energy flow rate

\(u_{cal}\): standard uncertainty of the meter after calibration

\(u_{op}\): standard uncertainty of the meter in operation

\(u_{com}\): standard uncertainty of the signal transmission

\(u_{fc}\): standard uncertainty of the flow computer acquisition and AD conversion

\(u_p\): standard uncertainty of the pressure measurement

\(u_t\): standard uncertainty of the temperature measurement

\(u_{Z/Z_0}\): standard uncertainty of the compressibility factor calculation (EOS and analysis)

\(u_{Hs}\): standard uncertainty of the calorific value calculation or analysis
Ultrasonic flow meter principle – uncertainty

USM CALIBRATION RESULT (after correction)

<table>
<thead>
<tr>
<th>Q/Q_i [%]</th>
<th>Q_i [m³/h]</th>
<th>Deviation [%]</th>
<th>CMC [%]</th>
<th>U_rel [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>74.7</td>
<td>19411</td>
<td>0.00</td>
<td>0.17</td>
<td>0.21</td>
</tr>
<tr>
<td>49.9</td>
<td>12965</td>
<td>0.04</td>
<td>0.17</td>
<td>0.20</td>
</tr>
<tr>
<td>24.8</td>
<td>6458.8</td>
<td>0.03</td>
<td>0.17</td>
<td>0.19</td>
</tr>
<tr>
<td>10.0</td>
<td>2607.2</td>
<td>0.00</td>
<td>0.17</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Measurand	U%(95%)
USM (calibration) | 0.21 – 0.20 |
Pressure | 0.16 |
Temperature | 0.0487 |
Compressibility factor (model and analysis) | ~ 0.34 |
Installation effects | 0.16 |

Typical uncertainty (U) for an ultrasonic meter run is 0.5 – 0.7%
Revamping a metering system—case study

4. Case study
Revamping a metering system—case study

BAUMGARTEN SITE

Operators: EUSTREAM, TAG

6 x 30” LEFM 380Ci installed in parallel at the BAUMGARTEN Border Station in Austria replacing existing Orifice Stations

BAUMGARTEN receives 1/3 of Russian gas into Europe and distributes this within the Austria network and towards Northern Italy

Application challenge: Only 10 available upstream and flow conditioners were to be avoided due to pressure drop and compression costs

Cameron LEFM 380Ci is an OIML R137 Class 0.5 device with a minimum of 5D and no flow conditioner
ARNOLDSTEIN STATION

Major Import Station accepting gas from Austria into Northern Italy
Operator: TAG
Onshore Austria

16 off 20” Cameron LEFM 380Ci mounted in series within an 8 stream system configuration
Picture of meters being installed and insulation added
MAIN PROJECT CONSTRAINTS

<table>
<thead>
<tr>
<th>#</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Measurement</td>
<td>Pay&check UFM configuration Class 0.5 OIML</td>
</tr>
<tr>
<td>2</td>
<td>Measurement</td>
<td>Class 0.5 OIML R137</td>
</tr>
<tr>
<td>3</td>
<td>Measurement\Environmental</td>
<td>Data transfer via DSFG bus, typical of german world</td>
</tr>
<tr>
<td>4</td>
<td>Environmental</td>
<td>Maintain calibration setup in installation</td>
</tr>
<tr>
<td>5</td>
<td>Environment</td>
<td>Respect the tie-in dimensions, i.e. fit overall length of the line.</td>
</tr>
<tr>
<td>6</td>
<td>Environment</td>
<td>Materials as per end user heritage</td>
</tr>
<tr>
<td>7</td>
<td>Environment</td>
<td>Lead time in accordance with plant shut down</td>
</tr>
<tr>
<td>8</td>
<td>Environment</td>
<td>maximize availability of the measurement</td>
</tr>
</tbody>
</table>
Revamping a metering system—case study

Constraint respected:
1. pay&check
2. Fit the available space
8. Maximize maintainability
Flow conditioner and calibration issues

No flow conditioner used
• No maintenance concerns
• No additional pressures losses
• Only the meter itself need be returned to the lab for calibration

Installing a flow conditioner at any position in the meter run upstream of the USM will cause a change of the meter’s indicated flowrate. This change depends on many factors (e.g. flow conditioner type, meter type, position relative to the USM, flow perturbation upstream of the flow conditioner, etc...)... To avoid this additional uncertainty, the best option is that the USM is calibrated with the actual flow conditioner and meter tube as one package (USMP)

ex ISO 17089-1

If a flow conditioner is to be used the meter should be calibrated along with its flow conditioner in the correct location and orientation. This set up should be carefully maintained in the field...
Revamping a metering system—case study

TRANSDUCER ARRANGMENT IN USED UFM

Constraint respected:
2. OIML 0.5 Class
8. Maximize measurement availability and maintainability
Revamping a metering system – case study

Constraint respected: 3. Dsfg bus DT
Constraint respected:
4. Maintain calibration setup in field installation
Revamping a metering system
Keep Internal conditions along time

Corrosion alters meter performance!

Application of special corrosion and adhesion resistance coatings can help preserve the original condition without altering its performance.

The coating can be applied to both the body and the transducer housing.
CALDON LEFM 380 Ci
• 8 paths design
• Flow conditioning not required
• Unique transducer arrangement
• Internal coating
• OIML R137 Class 0.5