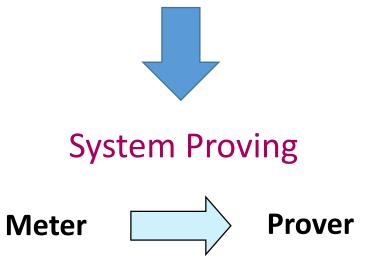


MISURE FISCALI


Milan, 25-10-2018
Auditorium TECNIMONT

Master Meter: ALL for ONE, ONE for ALL

Andrea Calo'

All custody / fiscal metering systems have accuracy and repeatability targets which must be guaranteed during their entire life cycle under real working conditions

System Proving consists in placing the duty meter in series with a meter prover having sufficiently better measurement accuracy and repeatability than the duty meter

Metering system at factory

high repeatability

high accuracy

Metering system in operation (bad but possible cases)

low repeatabilty low accuracy

high repeatability low accuracy

- Process Conditions; fluid, P, T, air etc..
- Measurement technology limits for mechanical meters (wear out, leakages..)

Metering system after Proving

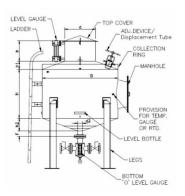
high repeatability high accuracy

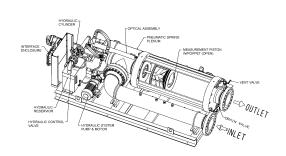
PROVING PROCESS

- Meter Factor calculation =
- Unknown Volume (Duty Meter)

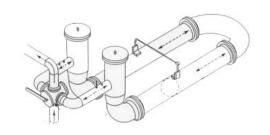
Known Volume (Prover)

Proving Validation criteria




Reference International Standards for Proving MPMS Ch.4

Manual of Petroleum Measurement Standards Chapter 4—Proving Systems

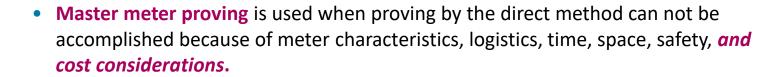

Open Tank Prover

Small Volume Piston Prover

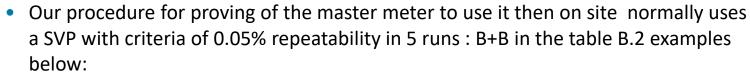
Pipe Prover (Uni or Bi-Di)

Master Meter Prover

Focus on Master Meter Proving


Manual of Petroleum Measurement Standards Chapter 4—Proving Systems


Section 5-Master-Meter Provers


Measurement Coordination Department

FIRST EDITION, OCTOBER 1988

- Third Edition, June 2011
- Note: Latest issue is:
- Fourth Edition, June 2016

Combinations	Random Uncertainty (RU1) Value of First Meter		MMF Range (spread) Defined in 6.2 and 6.3	Combined Uncertainty MMF Uncertainty = $\sqrt{RU_1^2 + RU_2^2 + (0.5 \times MMF \text{ Range})}$					
A+B	0.011 %	0.027 %	0.05 %	0.054 %					
A+C	0.011 %	0.073 %	0.10 %	0.124 %					
C+B	0.073 %	0.027 %	0.15 %	0.153 %					
B+B	0.027 %	0.027 %	0.05 %	0.063 %					

Enable a meter to be a Master Meter

Proverdata	Oural crud	le								
diameter cm	wall thickness cm elasticity t		thermal exp.	linear exp.	waterdraw vol. liters					
43,19	5,08	1,931E+06	0,000346	0,0000172	94,6814					
ref. Density @15 degr.C	830,3	830,3	830,3	830,3	830,3	830,3	830,3	830,3	830,3	830,3
flowrate tons/hr	160	160	160	160	160	140	140	140	140	140
Omni report	131					132				
prove run	1	2	3	4	5	1	2	3	4	5
pulses	3891,29	3889,991	3891,06	3889,816	3889,305	3887,812	3888,376	3888,348	3887,883	3889,182
prover density kg/M3	819,533	819,504	819,473	819,44	819,402	819,234	819,213	819,193	819,166	819,14
emp. Prover deg.C	29,88	29,92	29,96	30	30,06	30,28	30,31	30,33	30,37	30,4
CTSp	1,000741	1,000742	1,000744	1,000745	1,000747	1,000753	1,000754	1,000755	1,000757	1,000759
CTLp	0,986697	0,986662	0,986625	0,986585	0,986537	0,98634	0,986315	0,98629	0,986258	0,986229
Press. prover Barg	4,02	4,0192	4,016	4,013	4,018	3,98	3,977	3,978	3,978	3,978
CPSp	1,000018	1,000018	1,000018	1,000018	1,000018	1,000018	1,000017	1,000018	1,000018	1,000018
CPLp	1,00034	1,00034	1,00034	1,00339	1,00034	1,000337	1,000337	1,000337	1,000337	1,000337
meter density kg/M3	819,664	819,631	819,602	819,571	819,531	819,35	819,326	819,309	819,287	819,257
temp. Meter deg.C	29,77	29,82	29,86	29,9	29,95	30,18	30,21	30,23	30,26	30,3
CTLm	0,986794	0,986753	0,986753	0,986681	0,986632	0,986429	0,9864	0,986378	0,986352	0,986316
press. Meter Barg	4,761	4,761	4,76	4,757	4,757	4,594	4,591	4,594	4,595	4,595
CPLm	1,000402	1,000402	1,000402	1,000402	1,000402	1,000389	1,000389	1,000389	1,000389	1,000389
correct prover volume I	orover volume I 94,753 94,754 9		94,754	94,754	94,754	94,754	94,755	94,755	94,755	
prover mass kg	77,6534	77,6508	77,648	77,6449	77,6414	77,626	77,6241	77,6223	77,6199	77,6176
meter mass kg	77,8258 77,7998		77,8212	77,7963	77,7861	77,7562	77,767	77,767	77,7577	77,7836
neterfactor	0,997785	0,998084	0,997774	0,998053	0,99814	0,998325	0,998155	0,99814	0,998228	0,997865
final ref. Density"15 degr. C	833,22	833,22		833,22	833,22	833,22	833,22	833,22	833,22	833,22
density corr. Factor	1,003516801	1,0035168	1,0035168	1,0035168	1,003516801	1,0035168	1,0035168	1,0035168	1,0035168	1,0035168
vol. corr. Factor provervol.	1,001	1,001	1,001	1,001	1,001	1,001	1,001	1,001	1,001	1,001
(comp. To Maloney prover)										
neterfactor recalc	1,000293718	1,00059347	1,00028269	1,00056239	1,00064961	1,00083508	1,00066465	1,00064961	1,00073783	1,00037392
error	0,029371772	0,05934695	0,02826901	0,05623916	0,06496103	0,08350754	0,0664648	0,06496103	0,07378316	0,03739189
avg. Meterfactor	1,000476376				·	1,00065222				
epeatability +/-	0,018346011					0,02305783		_		
nax. deviation	0,036692023	∴ re	epeatabili	ity		0,04611566	:.	repeatal	oility	
iscosity kynematic cSt	3,7	rang	ge = 0.037	7%		3,67		nge = 0.0	-	
Reynoldsno:	182173		50 - 0.037/0			160763	I a	iige – 0.0	40/0	
flowvelocity (measuring tube)	13,16					11,52				

Enable a meter to be a Master Meter

N	0	Р	Q	R	S T	U	V	W	X	Y	Z	AA	AB	AC	AD
830,3	830,3	830,3	830,3	830,3	830,3	830,3	830,3	830,3	830,3		830,3	830,3	830,3	830,3	830,
91	91	91	91	91	60	60			60		25	25	25	25	2
133	· ·				134		-				135				_
1	2	3	4	5	1	2	3	4	5		1	2	3	4	
3888,388	3888,77	3888,527	3888,354	3888.476	3885,627	3885,874	3886,275		3886,065		3885,751	3884,696	3885,271	3884,534	3884.36
819,046	819,025	819,007	818,994	818,966	818,881	818,859	818,821	818,775	818,736		818,666	818,626	818,586	818,548	818,51
30,53	30,56	30,59	30,61	30,64	30,77	30,81	30,85	30,92	30,97		31,07	31,13	31,18	31,23	31,2
1,000767	1,000768	1,00077	1,000771	1,000773	1,000781	1,000783	1,000786		1,000792		1,000798	1,000802	1,000806	1,000811	1,00081
0,986109	0,986084	0,986062	0,986046	0,986013	0,985894	0,985866	0,985822	0,985766	0,985719		0,985626	0,985577	0,985529	0,985484	0,98544
4,025	4,029	4,028	4,024	4,027	4,211	4,212	4,215	4,215	4,212		4,305	4,309	4,306	4,304	4,30
1,000018	1,000018	1,000018	1,000018	1,000018	1,000019	1,000019	1,000019	1,000019	1,000019		1,000019	1,000019	1,000019	1,000019	1,000019
1,000342	1,000342	1,000342	1,000342	1,000342	1,000358	1,000358	1,000358	1,000358	1,000358		1,000367	1,00367	1,000367	1,000367	1,00036
819,139	819,108	819,094	819,079	819,056	818,959	818,932	818,896	818,849	818,81		818,743	818,701	818,668	818,627	818,59
30,44	30,48	30,5	30,52	30,55	30,68	30,72	30,77	30,83	30,88		30,98	31,03	31,08	31,13	31,18
0,986197	0,986158	0,986141	0,986123	0,986096	0,985976	0,985941	0,985898	0,985842	0,985795		0,985712	0,985661	0,985621	0,985573	0,98553
4,327	4,332	4,332	4,33	4,331	4,368	4,371	4,374	4,375	4,373		4,39	4,395	4,394	4,394	4,39
1,000367	1,000368	1,000368	1,000367	1,000368	1,000371	1,000371	1,000372	1,000372	1,000372		1,000374	1,000374	1,000374	1,000374	1,000374
94,756	94,756	94,756	94,756	94,756	94,757	94,757	94,758	94,758	94,758		94,759	94,759	94,76	94,76	94,70
77,6093	77,6074	77,6059	77,6022	77,6022	77,5948	77,5929	77,5896	77,5854	77,5819		77,5758	77,5722	77,5688	77,5656	77,562
77,7678	77,7754	77,7705	77,7695	77,7695	77,7125	77,7175	77,7255	77,719	77,7213		77,715	77,6939	77,7054	77,6907	77,687
0,997962	0,99784	0,997882	0,997912	0,997848	0,998485	0,998397	0,998251	0,99828	0,998207		0,998208	0,998434	0,998241	0,99839	0,998394
833.22	833,22	833.22	833.22	833,22	833.22	833,22	833.22	833.22	833,22		833.22	833,22	833.22	833.22	833,2
1,0035168	1,0035168	1,0035168	1,0035168	1,0035168	1,0035168	1,0035168		1,0035168	1,0035168		1,0035168	1,0035168	1,0035168	1,0035168	1,003516
1,001	1,001	1,001	1,001	1,001	1,001	1,001	1,001	1,001	1,001		1,001	1,001	1,001	1,001	1,00
1,00047116	1,00034886	1,00039096	1,00042104	1,00035688	1,00099548	1,00090726	1,00076089	1,00078996	1,00071678		1,00071778	1,00094435	1,00075086	1,00090024	1,0009042
0,04711628	0,0348856	0,03909616	0,0421037	0,03568761	0,09954777	0,09072565	0,07608894	0,07899623	0,07167788		0,07177813	0,09443495	0,07508642	0,09002389	0,0904248
1,00039778					1,00083407						1,0008435				
0,00611534	_		. 1. 1111		0,01393495						0,01132841		_		
0,01223067	range = 0.012%		5,021,000			∴ repeatability range = 0.028%				0,02265682		repeata			
3,64									3,6		rai	nge = 0.0			
105382				69880		Tallige .	- 0.020/0			29286	Iai	15C - 0.C	/23/0		
7,49					4,94						2,06				

Operating of a Master Meter

Manual of Petroleum Measurement Standards Chapter 4—Proving Systems

Section 8—Operation of Proving Systems

Measurement Coordination

FIRST EDITION, NOVEMBER 1995

- Note: Latest issue is:
- 2nd edition, September 2013

4.8.2.11 PROVER RECALIBRATION FREQUENCY

- c. The maximum interval indicated below has elapsed.
 - Three years for small volume provers and mobile provers.
 - Five years for permanently installed pipe provers.
 - 3. Five years for permanently installed tank provers.

4. Three months for master meter provers.

4.8.2.10 FREQUENCY OF METER PROVING

The frequency required for proving varies from several times a day to twice a year or even longer depending upon the value of the liquid, cost/benefit to prove, meter proving history, meter system stability, and variations of operating systems.

For large volumes or different liquids, a permanently installed prover is normally used. The meters should be proved whenever the flow rate, temperature, pressure, API Gravity (relative density), or viscosity changes significantly. Normally, time or volume is used to determine when the meter should be proved.

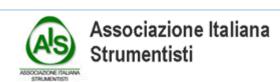
The proving frequency for new systems should start at short intervals and be extended to longer intervals as confidence increases in the system.

Coriolis Meter as best selection for Master Meter

- Best traceable accuracy and repeatability for top class products
- For top class products the traceable water calibration on the custody mass meter, is fully representative of the performance on oil product in the field then not affected by viscosity and density changes
- No wear out problems, no rotative part
- No need for P or T compensation for mass proving
- Suitable for mass and volume proving
- Compact and easy to be transported
- Faster proving than using displacement provers and so can be used more often.
- Easier proving than using displacement provers extremely easy to automate and so requires fewer skilled staff in the field.

Operating of a Coriolis Master Meter

- Coriolis meters shall comply with API MPMS Chapter 5.6.
- Prover meter factor for master meter proving of a mass meter using a mass master meter is calculated as below:


$$MF_P = \frac{M_{MM} \times MF_{MM}}{M_M}$$
 Meter factor calculated from proving [-]

MMM Master meter (uncorrected) mass [tonne]

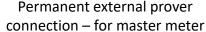
MFM Meter factor of the master meter (at the proving flow rate) [-]

MM Meter on prove (uncorrected) mass [tonne]

- Process conditions must ensure a single, homogenous fluid
- The meter factor that is determined during proving includes any error the zero value may be contributing. Prior to proving the line meter, but at the operating conditions (pressure and temperature) of the line meter, the master meter observed zero value should be verified.

Case study 1

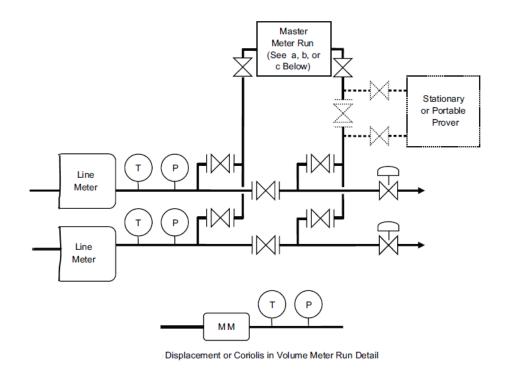
Region: Far East Asia

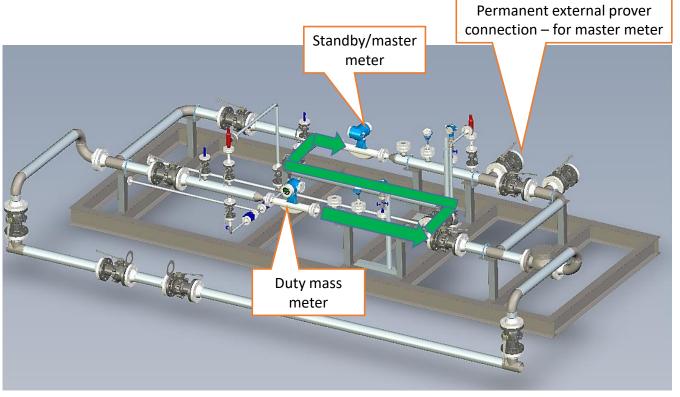

Customer Type: Refining

Application: LPG pipeline

Scope of supply:

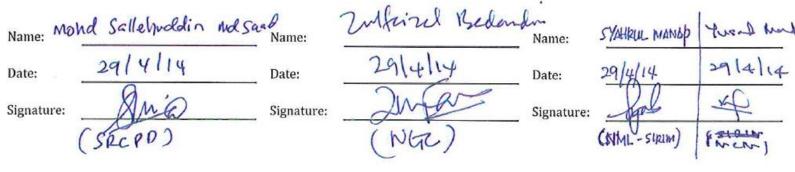
- N'1 Custody Transfer LPG Pipeline Metering System class
- Z pattern configuration for master meter
- Fully automated proving process
- Fluid: LPG

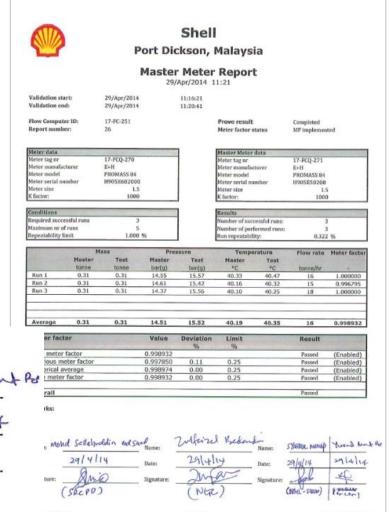




Manual of Petroleum Measurement Standards Chapter 4.5 Master Meter Provers

Z pattern / Pay & Check configuration





Approval of Weights & Measures on Site

- Various master-meter verifications at site initiated from control room – fully automated
- Then visit of SIRIM Berhad (wholly-owned company of the Malaysia Government), effectively, the weights & measures agency for Malaysia
- Validation also also from, NGC the end-customer

Powered by eXL erate

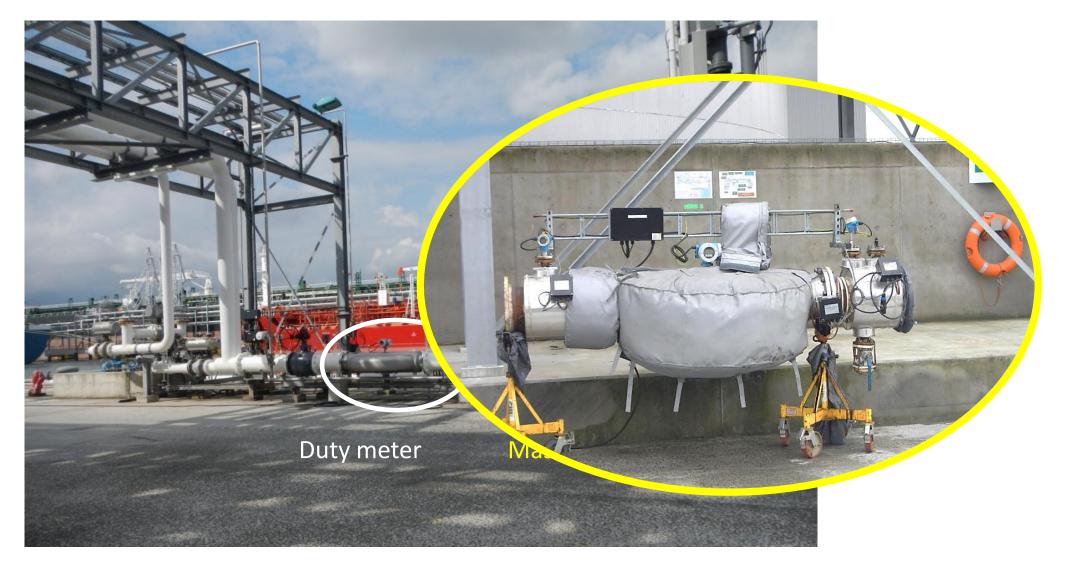
Case study 2

Region: Europe

Customer Type: Market Terminal

Application: Ship Loading

Scope of supply:


- 9 off Custody Transfer MID 0.5 approved systems with Coriolis 12"
- 1 off Coriolis- 12" Master Meter MID approved on portable trailer
- Fluid: Gasoil, Heavy & Mid Bunker Fuel Oil MGO IFO HFO

DUTY METER

MASTER METER

- Calibration certificate for the duty meter for MID 0.5 application
- Certificate of conformity

- Calibration certificate from accredited laboratory using oil calibration rig with bi directional ball prover
- Yearly verification certificate against our accredited water calibration rig

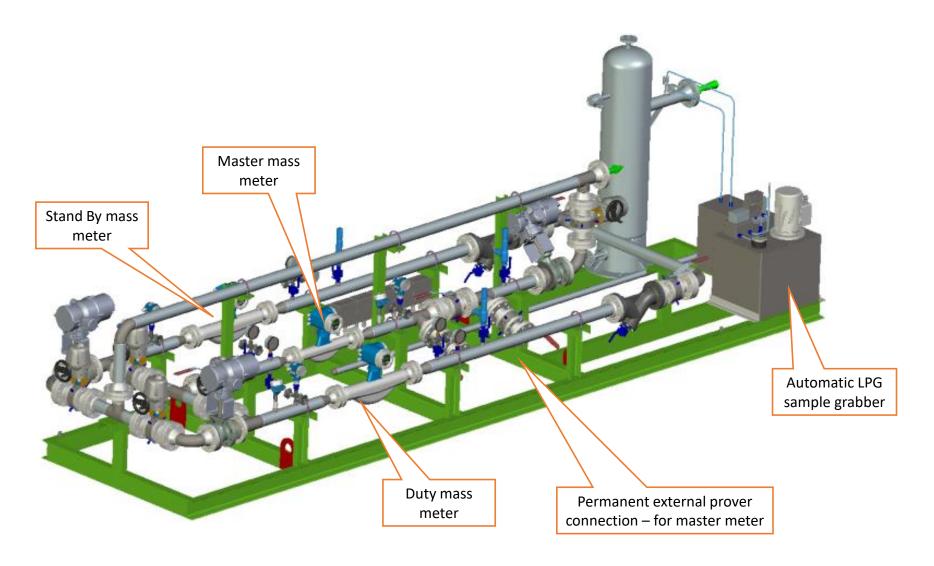
Case study 3

Region: Middle East

Customer Type: LPG production

Application: LPG pipeline

Scope of supply:


- 1 redundant custody transfer metering system
- 1 installed master meter
- Fully automated process including sampling and proving
- Fluid: LPG

Case study 4

Region: Africa

Customer Type: Distribution Terminal

Application: truck loading and pipeline metering

Scope of supply:

- 7 Metering streams for LPG
- 3 Metering streams for JET FUEL
- 3 Metering streams for HEAVY GAS OIL
- 23 Metering streams for GASOLINE
- 23 Metering streams for GAS OIL
- 1 Master meter

Case study 5

Region: Turkey

Customer Type: Terminals and Refinery

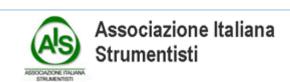
Application: Various, pipeline and ship

loading/unloading

Scope of supply Project :

- Various custody transfer systems for different locations, applications and fluids
- 1 common master meter mounted on truck
- Fluid: Diesel , Gasoil ,LPG, HFO

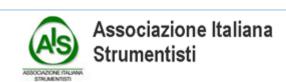
Test of connection between master meter and metering skid with flexi pipes


Grounding plug

Fast plug for signals

Connection test

Easy to operate as first target in our design



Messages to bring home

- Master metering is a practical and recognized procedure for proving of custody transfer metering systems
- Coriolis meter new generation represent the most indicate and performant technologies for master metering:
 - Full independence from process conditions
 - Highest accuracy both for mass and volume measurement
 - Highest metering stability and repeatability
 - High turndown ratio in order to allow the multiple meter sizes proving with one common device
 - Compact footprint for easy installation on mobile provers

ONE Coriolis master meter for

ALL proving needs

(....questions?)

